2025-04-01 2 min
KaTeX \KaTeX K A T E X is a cross-browser JavaScript library that displays mathematical notation in web browsers. It puts special emphasis on being fast and easy to use. It was initially developed by Khan Academy, and became one of the top five trending projects on GitHub.
Group Theory Burnside’s lemma, sometimes also called Burnside’s counting theorem, the Cauchy-Frobenius lemma or the orbit-counting theorem
Let ∧ \wedge ∧ be a group action of a finite group G G G on a finite set X X X . Then the number t t t of orbits of the action is given by the formula
t = 1 ∣ G ∣ ∑ g ∈ G ∣ Fix ( g ) ∣ t=\frac{1}{|G|}\sum_{g\in G}|\text{Fix}(g)| t = ∣ G ∣ 1 g ∈ G ∑ ∣ Fix ( g ) ∣ For each integer n ≥ 2 n\ge2 n ≥ 2 , the quotient group Z / n Z \mathbb{Z}/n\mathbb{Z} Z / n Z is a cyclic group generated by 1 + n Z 1+n\mathbb{Z} 1 + n Z and so Z / n Z ≅ Z n \color{red}{\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n} Z / n Z ≅ Z n
The quotient group R / Z \mathbb{R}/\mathbb{Z} R / Z is isomorphic to ( [ 0 , 1 ) , + 1 ) ([0,1),+_1) ([ 0 , 1 ) , + 1 ) , the group of real numbers in the interval [ 0 , 1 ) [0,1) [ 0 , 1 ) , under addition modulo 1.
Isomorphism Theorem. Let ϕ : ( G , ∘ ) → ( H , ∗ ) \phi\colon(G,\circ)\to(H,*) ϕ : ( G , ∘ ) → ( H , ∗ ) be a homomorphism. Then the function
f : G / Ker ( ϕ ) → Im ( ϕ ) x Ker ( ϕ ) ↦ ϕ ( x ) \begin{aligned} f\colon G/\text{Ker}(\phi)&\to\text{Im}(\phi)\\ x\text{Ker}(\phi)&\mapsto\phi(x) \end{aligned} f : G / Ker ( ϕ ) x Ker ( ϕ ) → Im ( ϕ ) ↦ ϕ ( x ) is an isomorphism, so
G / Ker ( ϕ ) ≅ Im ( ϕ ) G/\text{Ker}(\phi)\cong \text{Im}(\phi) G / Ker ( ϕ ) ≅ Im ( ϕ ) Taylor’s Theorem Let the function f f f be an ( n + 1 ) (n+1) ( n + 1 ) -times differentiable on an open interval containing the points a a a and x x x . Then
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) f(x)=f(a)+f'(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x) f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + ⋯ + n ! f ( n ) ( a ) ( x − a ) n + R n ( x ) where
R n ( x ) = f ( n + 1 ) ( c ) ( n + 1 ) ! ( x − a ) n + 1 , R_n(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}, R n ( x ) = ( n + 1 )! f ( n + 1 ) ( c ) ( x − a ) n + 1 , for some c c c between a a a and x x x .
KaTeX \KaTeX K A T E X doesn’t have a right-align option so an extra aligned column is used for equation numbers. They are pushed to the right by mkern spacing, default \mkern100mu. Both align & align* environments can be used, as can \tag and \notag.
Align environment π 4 n 2 = 4 n ( n ! ) 2 2 n 2 ( 2 n ) ! n ( 2 n − 1 ) J n − 1 − 4 n ( n ! ) 2 2 n 2 ( 2 n ) ! 2 n 2 J n = 4 n 4 ( 2 n ) ! ( n ! n ) 2 2 n ( 2 n − 1 ) J n − 1 − 4 n ( n ! ) 2 ( 2 n ) ! J n = 4 n − 1 ( ( n − 1 ) ! ) 2 ( 2 n − 2 ) ! J n − 1 − 4 n ( n ! ) 2 ( 2 n ) ! J n \begin{align} \frac{\pi}{4n^2} &= \frac{4^n(n!)^2}{2n^2(2n)!}n(2n-1)J_{n-1}-\frac{4^n(n!)^2}{2n^2(2n)!}2n^2J_n \tag{1} \\ &= \frac{4^n}{4(2n)!}\left(\frac{n!}{n}\right)^22n(2n-1)J_{n-1}-\frac{4^n(n!)^2}{(2n)!}J_n \tag{$\ddagger$} \\ &= \frac{4^{n-1}((n-1)!)^2}{(2n-2)!}J_{n-1}-\frac{4^n(n!)^2}{(2n)!}J_n \tag{2} \end{align} 4 n 2 π = 2 n 2 ( 2 n )! 4 n ( n ! ) 2 n ( 2 n − 1 ) J n − 1 − 2 n 2 ( 2 n )! 4 n ( n ! ) 2 2 n 2 J n = 4 ( 2 n )! 4 n ( n n ! ) 2 2 n ( 2 n − 1 ) J n − 1 − ( 2 n )! 4 n ( n ! ) 2 J n = ( 2 n − 2 )! 4 n − 1 (( n − 1 )! ) 2 J n − 1 − ( 2 n )! 4 n ( n ! ) 2 J n ( 1 ) ( ‡ ) ( 2 ) Align* environment 4 N ( N ! ) 2 ( 2 N ) ! J N ≤ 4 N ( N ! ) 2 ( 2 N ) ! π 2 4 1 2 n + 2 I 2 N = π 2 8 ( N + 1 ) 4 N ( N ! ) 2 ( 2 N ) ! I 2 N = π 2 8 ( N + 1 ) π 2 = π 3 16 ( N + 1 ) x sin x ≤ π 2 so x ≤ π 2 sin x \begin{align} \frac{4^N(N!)^2}{(2N)!}J_N &\leq \frac{4^N(N!)^2}{(2N)!}\frac{\pi^2}{4}\frac{1}{2n+2}I_{2N} \tag{*} \\ &= \frac{\pi^2}{8(N+1)}\frac{4^N(N!)^2}{(2N)!}I_{2N} \\ &= \frac{\pi^2}{8(N+1)}\frac{\pi}{2} \tag{**} \\ &= \frac{\pi^3}{16(N+1)} \\ \frac{x}{\sin x} &\leq \frac{\pi}{2} \tag{3} \\ \text{so} \qquad\qquad x &\leq \frac{\pi}{2}\sin x \tag{4} \end{align} ( 2 N )! 4 N ( N ! ) 2 J N sin x x so x ≤ ( 2 N )! 4 N ( N ! ) 2 4 π 2 2 n + 2 1 I 2 N = 8 ( N + 1 ) π 2 ( 2 N )! 4 N ( N ! ) 2 I 2 N = 8 ( N + 1 ) π 2 2 π = 16 ( N + 1 ) π 3 ≤ 2 π ≤ 2 π sin x ( * ) ( ** ) ( 3 ) ( 4 ) Sum of a Series ∑ i = 1 k + 1 i = ( ∑ i = 1 k i ) + ( k + 1 ) = k ( k + 1 ) 2 + k + 1 = k ( k + 1 ) + 2 ( k + 1 ) 2 = ( k + 1 ) ( k + 2 ) 2 = ( k + 1 ) ( ( k + 1 ) + 1 ) 2 \begin{align*} \sum_{i=1}^{k+1}i &= \left(\sum_{i=1}^{k}i\right) +(k+1) \tag{1} \\ &= \frac{k(k+1)}{2}+k+1 \tag{2} \\ &= \frac{k(k+1)+2(k+1)}{2} \tag{3} \\ &= \frac{(k+1)(k+2)}{2} \tag{4} \\ &= \frac{(k+1)((k+1)+1)}{2} \tag{5} \end{align*} i = 1 ∑ k + 1 i = ( i = 1 ∑ k i ) + ( k + 1 ) = 2 k ( k + 1 ) + k + 1 = 2 k ( k + 1 ) + 2 ( k + 1 ) = 2 ( k + 1 ) ( k + 2 ) = 2 ( k + 1 ) (( k + 1 ) + 1 ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) Product notation 1 + q 2 ( 1 − q ) + q 6 ( 1 − q ) ( 1 − q 2 ) + ⋯ = ∏ j = 0 ∞ 1 ( 1 − q 5 j + 2 ) ( 1 − q 5 j + 3 ) , for ∣ q ∣ < 1. 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \text{ for }\lvert q\rvert < 1. 1 + ( 1 − q ) q 2 + ( 1 − q ) ( 1 − q 2 ) q 6 + ⋯ = j = 0 ∏ ∞ ( 1 − q 5 j + 2 ) ( 1 − q 5 j + 3 ) 1 , for ∣ q ∣ < 1. Cross Product V 1 × V 2 = ∣ i j k ∂ X ∂ u ∂ Y ∂ u 0 ∂ X ∂ v ∂ Y ∂ v 0 ∣ \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\[1ex] \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\[2.5ex] \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} V 1 × V 2 = i ∂ u ∂ X ∂ v ∂ X j ∂ u ∂ Y ∂ v ∂ Y k 0 0 Maxwell’s Equations ∇ × B ⃗ − 1 c ∂ E ⃗ ∂ t = 4 π c j ⃗ ∇ ⋅ E ⃗ = 4 π ρ ∇ × E ⃗ + 1 c ∂ B ⃗ ∂ t = 0 ⃗ ∇ ⋅ B ⃗ = 0 \begin{align*} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &= \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} &= 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &= \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} &= 0 \end{align*} ∇ × B − c 1 ∂ t ∂ E ∇ ⋅ E ∇ × E + c 1 ∂ t ∂ B ∇ ⋅ B = c 4 π j = 4 π ρ = 0 = 0 Greek Letters Γ Δ Θ Λ Ξ Π Σ Υ Φ Ψ Ω α β γ δ ϵ ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ ϕ χ ψ ω ε ϑ ϖ ϱ ς φ \begin{align*} &\Gamma\ \Delta\ \Theta\ \Lambda\ \Xi\ \Pi\ \Sigma\ \Upsilon\ \Phi\ \Psi\ \Omega\\ &\alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta\ \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu\ \nu\ \xi\ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega\ \varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi \end{align*} Γ Δ Θ Λ Ξ Π Σ Υ Φ Ψ Ω α β γ δ ϵ ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ ϕ χ ψ ω ε ϑ ϖ ϱ ς φ Arrows ← → ← → ↑ ⇑ ↓ ⇓ ↕ ⇕ ⇐ ⇒ ↔ ⇔ ↦ ↩ ↼ ↽ ⇌ ⟵ ⟸ ⟶ ⟹ ⟷ ⟺ ⟼ ↪ ⇀ ⇁ ⇝ ↗ ↘ ↙ ↖ \begin{align*} &\gets\ \to\ \leftarrow\ \rightarrow\ \uparrow\ \Uparrow\ \downarrow\ \Downarrow\ \updownarrow\ \Updownarrow\\ &\Leftarrow\ \Rightarrow\ \leftrightarrow\ \Leftrightarrow\ \mapsto\ \hookleftarrow\\ &\leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \longleftarrow\ \Longleftarrow\ \longrightarrow\\ &\Longrightarrow\ \longleftrightarrow\ \Longleftrightarrow\ \longmapsto\ \hookrightarrow\ \rightharpoonup\\ &\rightharpoondown\ \leadsto\ \nearrow\ \searrow\ \swarrow\ \nwarrow \end{align*} ← → ← → ↑ ⇑ ↓ ⇓ ↕ ⇕ ⇐ ⇒ ↔ ⇔ ↦ ↩ ↼ ↽ ⇌ ⟵ ⟸ ⟶ ⟹ ⟷ ⟺ ⟼ ↪ ⇀ ⇁ ⇝ ↗ ↘ ↙ ↖ Symbols √ ⊼ ⊻ ⊙ ⊕ ⊗ ⊘ ⊚ ⊡ △ ▽ † ⋄ ⋆ ◃ ▹ ∠ ∞ ′ △ \begin{align*} &\surd\ \barwedge\ \veebar\ \odot\ \oplus\ \otimes\ \oslash\ \circledcirc\ \boxdot\ \bigtriangleup\\ &\bigtriangledown\ \dagger\ \diamond\ \star\ \triangleleft\ \triangleright\ \angle\ \infty\ \prime\ \triangle \end{align*} √ ⊼ ⊻ ⊙ ⊕ ⊗ ⊘ ⊚ ⊡ △ ▽ † ⋄ ⋆ ◃ ▹ ∠ ∞ ′ △ Samples taken from KaTeX Live Demo
预览: